New Logic Modeling Paradigms for Complex System Reliability and Risk Analysis

Antoine Rauzy
Chair Blériot-Fabre* - Ecole Centrale de Paris
Ecole Polytechnique
FRANCE
Antoine.Rauzy@ecp.fr
http://www.lgi.ecp.fr/pmwiki.php/PagesPerso/ARauzy

*Sponsored by SAFRAN group
Probabilistic Risk Assessment ...

... is now established on a solid scientific ground
... is a mature technology
... is a great tool for decision making

So, what’s next?

• More openness
• Higher level modeling languages
• Wider spectrum of applications
Standard Representation Formats

Issue:
- Models are tool-dependent
- Calculations are provably difficult so calculation engines perform unwarranted approximations

Challenge/research direction:
Define standard representation formats, with all the necessary constructs, with a clear and sound semantics

Version 3 of the Open-PSA standard under redaction
- Simplifications
- Block Diagrams
- Multi-phase Markov Chains with Rewards

Open-PSA Standard Representation Format for Fault Trees and Event Trees

```xml
<define-fault-tree name="FT1">
  <define-gate name="top">
    <or>
      <gate name="G"/>
      <basic-event name="C"/>
    </or>
  </define-gate>
  <define-gate name="G">
    <and>
      <basic-event name="A"/>
      <basic-event name="B"/>
    </and>
  </define-gate>
</define-fault-tree>
```
New Algorithms for Model Assessment

Typical example (US plant):
• ~2 500 Basic Events PSA model
What has been calculated:
• ~100 000 Minimal Cutsets
• 95% of the Core Damage Frequency with less than 5% of the Basic Events, 100% with 25%
In a word, 75% of the model is “useless”!

Issues:
• Finding the right level of abstraction is difficult to achieve

Design Filtering Algorithms that to build simpler models that are equivalent w.r.t. to observation means
Categories of Models

Challenge/research direction:
Many possibly very different models are undistinguishable by observation means, i.e. results of virtual experiments (typically, calculation of failure scenarios). They are equivalent in the Turing test sense.
Equivalent models form a category.
Design mathematical concepts, algorithms and tools to determine the most representative (simplest?) model of a category.
High Level Modeling Languages

Issues:
- **Completeness** of specifications with respect to safety concerns
- **Distance** between system specifications and safety models
- **Integration** with other system engineering disciplines

System Specification

AltaRica

AltaRica features
- Formal
- Event-Based
- Textual & graphical
- Multiple assessment tools

Fault Trees/Event Trees

Minimal Cutsets

Probabilistic Indicators

The PRA/PSA process

Fault Trees

Automated Generation

Calculations

class component
state Boolean working (init = true);

\[\text{event} \text{ failure (delay} = \text{exponential(\lambda))}; \]

transition
failure: working -> working := false;

end

Formal
Event-Based
Textual & graphical
Multiple assessment tools
Guarded Transition Systems:

```plaintext
domain componentState { STANDBY, WORKING, FAILED}

class spareComponent
    componentState s (init = WORKING);
    Boolean demanded (reset = false);
    event turnOn (delay = 0, expectation = 0.98),
        failureOnDemand (delay = 0, expectation = 0.02),
        turnOff (delay = 0),
        failure (delay = exponential(0.001)),
        repair (delay = exponential(0.1));
    transition
        turnOn: s==STANDBY and demanded -> s := WORKING;
        failureOnDemand: s==STANDBY and demanded -> s := FAILED;
        turnOff: s==WORKING and not demanded -> s := FAILED;
        failure: s==WORKING -> s := FAILED;
        repair: s==FAILED -> s := STANDBY;
end
```

Well founded generalization of:
- Fault Trees, Blocks Diagrams
- Markov chains, Stochastic Petri Nets
The AltaRica 3.0 Project

- Reliability Data
 - MIL-HDBK
- Libraries
 - patterns
- Petri Nets
- Dynamic Fault Trees
- compilation to Fault Trees
- compilation to Markov Chains
- Guessed Transition Systems
- stochastic simulation
- model checking
- reliability allocation

- GUI for modeling
- GUI for simulation
- AltaRica 3.0
 - class Pump
 - ... end

- Version & Configuration Management System
- AADL
- SysML
- FMEA

- stochastic simulation
 - \[C_s(R_t) = e^{(1-f) \frac{R_t - R_{min,t}}{R_{max,t} - R_t}} \]
Performances Assessment

Issues:
- The **business model** of industry is moving from **selling products** to **selling capacities**
- Companies have to take **commitments** and to do so to **assess performances** of systems in presence of hazards.

PRA languages and tools are well suited to **assess capacities** (it mainly suffices to assess mathematical expectations rather than probabilities)