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Trajectory of my Work in AI-related Applications in Different Domain
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Age of Symbolic AI Age of connectionist AI Age of both?



Complexity Handling
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Challenge:
• Deep Domain Knowledge

Challenge:
• Computing Power
• Un-Structure Data Handling
• Self-Learning Algorithm

Up to100 rules Up to 5M parameters

Challenge: GPT-based Causal Inference
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Addressing Data Challenges: Our Work on Data Processing for 
ML-Based Reliability Decision Making 
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Physics-Based Models Using Data-Revealed Degradation Deep NN 
Models

1  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐶𝐶Δ𝐾𝐾𝑚𝑚, 𝑎𝑎: crack length, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

: crack growth rate, 𝐶𝐶 & 𝑚𝑚: constants (depend on the material and environment), Δ𝐾𝐾: stress intensity.

Physics-Based Models
Empirical models

(e.g., Paris law1 in Fatigue Fracture)
Data-revealed degradation models

(deep learning NN models)

Developed simple models from empirical 
data

Formulated explicitly mathematically

Approximate multi-parameter complex 
functions from empirical, field and test data

No explicit mathematical form
Do not consider environmental and user 
behaviors

Processes high-dimensional data including 
environmental and user behaviors

Hard to apply to components, products and 
systems Applies to items with available (big) data
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Quick Background on Deep Learning from Labeled Data

Sensor and other measurements
(e.g., temperature, humidity, 

vibration, time)

𝑁𝑁(𝝎𝝎,𝒃𝒃)

Degradation intensity
(e.g., crack length, mass loss, 

remaining useful life)

High Dimensional Inputs Output

Deep learning model

… … …

…
…
…

…

…

𝝎𝝎: weights
𝒃𝒃: biases

Input 
layer

Output 
layer
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𝒉𝒉𝑖𝑖 = 𝜎𝜎 𝑾𝑾𝑖𝑖
𝑇𝑇𝒉𝒉𝑖𝑖−1 + 𝒃𝒃𝑖𝑖

𝒉𝒉𝑖𝑖: output of hidden layer i
𝜎𝜎: activation function
𝑾𝑾𝑖𝑖: matrix of weights
𝒃𝒃𝑖𝑖: vector of biases …

𝒉𝒉𝑖𝑖𝒉𝒉𝑖𝑖−1
• Each layer transforms input data (output of previous 

layer) through weighted connections and activation 
functions, extracting hierarchical features.



Challenges of Deep Learning-Based Degradation Modeling

1. Just fit the data: Without consideration of the underlying physics of degradation

2. High number of parameters: Requiring a substantial amount of training data

3. Numerous non-linear transformations: Lack of interpretability

Adding physics as 
a constraint

Solution
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𝑁𝑁(𝝎𝝎,𝒃𝒃)

… … …

…
…
…

…

…

𝝎𝝎: weights
𝒃𝒃: biases

Input 
layer

Output 
layer



Literature on DL Degradation
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DL models have been widely used for modeling degradation:

• Algorithms:
• Feedforward NN [4, 5, 6, 7]
• Convolutional NN [8, 9, 3, 10]
• Recurrent NN [11, 12, 13]
• Autoencoders [14, 15, 16]
• …

• Applications:
• Batteries [2]
• Rotating machinery [1]
• Machining tools [3]
• …

[1] M. Hamadache, J. H. Jung, J. Park and B. D. Youn, "A comprehensive review of artificial intelligence-based approaches for rolling element bearing PHM: shallow and deep learning," JMST Advances, vol. 1, no. 1, pp. 125-151, 2019. 
[2] H. Meng and Y.-F. Li, "A review on prognostics and health management (PHM) methods of lithium-ion batteries," Renewable and Sustainable Energy Reviews, vol. 116, p. 109405, 2019. 
[3] F. Aghazadeh, A. Tahan and M. Thomas, "Tool condition monitoring using spectral subtraction algorithm and artificial intelligence methods in milling process," The International Journal of Advanced Manufacturing Technology, vol. 7, pp. 30-34, 2018. 
[4] Z. Kang, C. Catal and B. Tekinerdogan, "Remaining useful life (RUL) prediction of equipment in production lines using artificial neural networks," Sensors, vol. 21, no. 3, p. 932, 2021.
[5] P. Khumprom, D. Grewell and N. Yodo, "Deep neural network feature selection approaches for data-driven prognostic model of aircraft engines," Aerospace, vol. 7, no. 9, p. 132, 2020.
[6] F. Elasha, S. Shanbr, X. Li and D. Mba, "Prognosis of a wind turbine gearbox bearing using supervised machine learning," Sensors, vol. 19, no. 14, p. 3092, 2019.  
[7] A. Ismail, L. Saidi, M. Sayadi and M. Benbouzid, "A new data-driven approach for power IGBT remaining useful life estimation based on feature reduction technique and neural network," Electronics, vol. 9, no. 10, p. 1571, 2020. 
[8] B. Liu, Z. Gao, B. Lu, H. Dong and Z. An, "Deep learning-based remaining useful life estimation of bearings with time-frequency information," Sensors, vol. 22, no. 19, p. 7402, 2022 
[9] C. Modarres, N. Astorga, E. L. Droguett and V. Meruane, "Convolutional neural networks for automated damage recognition and damage type identification," Structural Control and Health Monitoring, vol. 25, no. 10, p. e2230, 2018. 
[10] X. Li, Q. Ding and J.-Q. Sun, "Remaining useful life estimation in prognostics using deep convolution neural networks," Reliability Engineering & System Safety, vol. 172, pp. 1-11, 2018. 
[11] Y. Hu, R. Wei, Y. Yang, X. Li, Z. Huang, Y. Liu, C. He and H. Lu, "Performance degradation prediction Using LSTM with optimized parameters," Sensors, vol. 22, no. 6, p. 2407, 2022. 
[12] J. Zhang, Y. Zeng and B. Starly, "Recurrent neural networks with long term temporal dependencies in machine tool wear diagnosis and prognosis," SN Applied Sciences, vol. 3, pp. 1-13, 2021. 
[13] L. Guo, N. Li, F. Jia, Y. Lei and J. Lin, "A recurrent neural network-based health indicator for remaining useful life prediction of bearings," Neurocomputing, vol. 240, pp. 98-109, 2017. 
[14] D. Verstraete, E. Droguett and M. Modarres, "A deep adversarial approach based on multi-sensor fusion for semi-supervised remaining useful life prognostics," Sensors, vol. 20, no. 1, p. 176, 2019. 
[15] Y. Ding, P. Ding and M. Jia, "A novel remaining useful life prediction method of rolling bearings based on deep transfer auto-encoder," IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-12, 2021. 
[16] M. Wei, M. Ye, Q. Wang and J. P. Twajamahoro, "Remaining useful life prediction of lithium-ion batteries based on stacked autoencoder and Gaussian mixture regression," Journal of Energy Storage, vol. 47, p. 103558, 2022. 

DL: Deep Learning, NN: Neural Network
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Literature on DL Degradation (cont.)

NN: Neural Network, PDE: Partial Differential Equation

• Physics-informed NN for solving challenging PDEs
• Fluids mechanics, quantum mechanics, propagation of nonlinear shallow-water waves [17]
• Euler equations that model high-speed aerodynamic flows [18]
• Klein-Gordon equation [19]

[17] M. Raissi, P. Perdikaris and G. E. Karniadakis, "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations," Journal of Computational Physics, vol. 378, pp. 686-707, 2019.
[18] Z. Mao, A. D. Jagtap and G. E. Karniadakis, "Physics-informed neural networks for high-speed flows," Computer Methods in Applied Mechanics and Engineering, vol. 360, p. 112789, 2020.
[19] A. D. Jagtap, K. Kawaguchi and G. E. Karniadakis, "Adaptive activation functions accelerate convergence in deep and physics-informed neural networks," Journal of Computational Physics, vol. 404, p. 109136, 2020.
[20] X.-C. Zhang, J.-G. Gong and F.-Z. Xuan, "A physics-informed neural network for creep-fatigue life prediction of components at elevated temperatures," Engineering Fracture Mechanics, vol. 258, p. 108130, 2021.
[21] T. Zhou, S. Jiang, T. Han, S.-P. Zhu and Y. Cai, "A physically consistent framework for fatigue life prediction using probabilistic physics-informed neural network," International Journal of Fatigue, vol. 166, p. 107234, 2023. 
[22] S. Kim, J.-H. Choi and N. H. Kim, "Data-driven prognostics with low-fidelity physical information for digital twin: physics-informed neural network," Structural and Multidisciplinary Optimization, vol. 65, no. 9, p. 255, 2022. 

• Physics-informed NN in degradation modeling
• Creep-fatigue life [20]
• Fatigue life [21]
• Bearing degradation and crack growth [22]

Presenter Notes
Presentation Notes
The main goals of embedding physics laws in data-driven models are accelerating training (with limited data) and improving the generalization of the models.in addition to solving difficult PDEs, PINNs make it possible to have a physics-consistent DL-based PHM model (i.e., interpretable) for prognosis and diagnosis purposes. Because besides learning from the data, a PINN must follow prior knowledge about the physical degradation mechanism, which is usually discovered empirically. penalize negative values and values higher than 10^5 for the creep-fatigue lifewhen stress amplitude decreases, fatigue life variance increasesenvelope analysis of the bearing vibrations spectrum to set some thresholds that define the intensity of damage and then penalize the lost function of a CNN in the case that the estimated health class by the DL model does not agree with the envelope analysis (physical knowledge). by considering physics-based heat transfer equations as the cost function of a DL model.



Objectives
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• Discovering/Incorporating Physics 
• Establishing a relationship between the suspected influential user and 

environmental factors and first-order degradation rate: 𝜕𝜕𝐷𝐷
𝜕𝜕𝜕𝜕

= 𝑓𝑓 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑛𝑛

• Providing Interpretability
• Identifying the primary users stresses and environmental factors that 

significantly impact the degradation process

Presenter Notes
Presentation Notes
This research study acknowledges that degradation intensity in a system does not solely depend on time; it can also vary across different frequencies or spatial coordinates within a system. Therefore, to obtain a more accurate understanding of degradation behaviorThe case studies data used in this study contain no data anomalies, and all have the same numerical values. However, challenges such as unlabeled data, anomalies (like missing data and erroneous sensor measurements), and the presence of non-structured, multi-modal, and heterogeneous data are common when dealing with real-world datasets.This dissertation focuses only on prognostics applications (i.e., estimation of RUL or degradation intensity). However, it is also essential to consider diagnostics to develop a highly effective proactive maintenance strategy. 



The Core Approach: Dual Guided Neural Network (GNN) Framework
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�𝜕𝜕𝐷𝐷
𝜕𝜕𝑡𝑡

𝑁𝑁(𝜔𝜔,𝜃𝜃)

�𝐷𝐷

𝑀𝑀(𝜓𝜓, 𝜂𝜂)

Automatic 
Differentiation

(
𝜕𝜕�𝐷𝐷
𝜕𝜕𝑡𝑡

)𝐴𝐴𝐷𝐷

𝐶𝐶 =
1
𝑁𝑁�

1

𝑑𝑑

(𝐷𝐷 − �𝐷𝐷)2+
𝜆𝜆
𝑁𝑁�

1

𝑑𝑑

((
𝜕𝜕�𝐷𝐷
𝜕𝜕𝑡𝑡 )𝐴𝐴𝐷𝐷−

�𝜕𝜕𝐷𝐷
𝜕𝜕𝑡𝑡 )2

Revealed Physics of 
Degradation NetworkPredictive Network

𝒔𝒔
𝑡𝑡

𝒔𝒔

𝜕𝜕𝐷𝐷
𝜕𝜕𝑡𝑡

= 𝑓𝑓(𝒔𝒔)

𝐷𝐷: Actual degradation intensity
�𝐷𝐷: Degradation intensity estimated by the predictive network
(𝜕𝜕

�𝐷𝐷
𝜕𝜕𝜕𝜕

)𝐴𝐴𝐷𝐷: Degradation rate based on predictive network estimation
�𝜕𝜕𝐷𝐷
𝜕𝜕𝜕𝜕

: Degradation rate estimated by the physics discovery network
𝑁𝑁: Number of data points
λ: Weight coefficient

Features Im
portance

Underlying Physics of Degradation

Custom designed
Cost function

ConstraintError

• Scenario 1: Trained separately (when degradation rate labels are available).
• Scenario 2: Trained together (when degradation rate labels are not available).

𝒔𝒔: Sensors and other data
𝒕𝒕: time or cycle of use

Presenter Notes
Presentation Notes
It results due to the external vibrations in the surrounding or cyclic expansion and contraction of the contacting bodies from temperature cycling (difference in CTEs).Preventative Measures:Lubrication (Mineral and synthetic oils, greases, PFPE, PAO, etc.),Thickness design of the contacts (plating)



Data Simulation for Demonstration
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• Assumptions:
• Seven environmental factors are collected by seven 

sensors (i.e., 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆7).
• Underlying physics: 𝜕𝜕𝐷𝐷

𝜕𝜕𝜕𝜕
= a × Ln(𝑆𝑆12) + 𝑏𝑏 × 𝑆𝑆1 ×

𝑆𝑆7 + 𝑐𝑐 × (𝑆𝑆2 + 𝑆𝑆3 + 𝑆𝑆4 + 𝑆𝑆5 + 𝑆𝑆6)
• Parameters a, b, and c are constants set to 0.5, 2, and 

0.001, respectively.
• Degradation rates were randomly drawn from a 

uniform distribution with a minimum value of 0 and a 
maximum value of 10.

Sensor Distribution Inspiration 
factor

𝑆𝑆1 𝒩𝒩(𝜇𝜇 = 25, 𝜎𝜎 = 10) Temperature

𝑆𝑆2
𝒩𝒩(𝜇𝜇 = 70, 𝜎𝜎 = 15) Relative 

humidity
𝑆𝑆3 𝒩𝒩(𝜇𝜇 = 7, 𝜎𝜎 = 2) pH
𝑆𝑆4 𝒩𝒩(𝜇𝜇 = 10, 𝜎𝜎 = 2) Wind speed
𝑆𝑆5 𝒰𝒰(𝜇𝜇 = 0, 𝜎𝜎 = 360) Wind direction
𝑆𝑆6 𝒩𝒩(𝜇𝜇 = 100, 𝜎𝜎 = 10) Solar radiation

Presenter Notes
Presentation Notes
This research study acknowledges that degradation intensity in a system does not solely depend on time; it can also vary across different frequencies or spatial coordinates within a system. Therefore, to obtain a more accurate understanding of degradation behaviorThe case studies data used in this study contain no data anomalies, and all have the same numerical values. However, challenges such as unlabeled data, anomalies (like missing data and erroneous sensor measurements), and the presence of non-structured, multi-modal, and heterogeneous data are common when dealing with real-world datasets.This dissertation focuses only on prognostics applications (i.e., estimation of RUL or degradation intensity). However, it is also essential to consider diagnostics to develop a highly effective proactive maintenance strategy. 



Verification with the Simulated Dataset
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Scenario 1: Degradation rate labels are available

��𝑑𝑑𝐷𝐷
𝑑𝑑𝑡𝑡

𝑠𝑠1

𝑠𝑠𝑛𝑛

…

𝑵𝑵𝝎𝝎,𝜽𝜽 𝒔𝒔𝟏𝟏…𝒏𝒏

Physics Discovery Network

Predictive Network

𝑠𝑠1

𝑠𝑠𝑛𝑛 �𝐷𝐷

𝑡𝑡

…

��𝑑𝑑𝐷𝐷
𝑑𝑑𝑡𝑡

𝑠𝑠1

𝑠𝑠𝑛𝑛

…

𝑵𝑵𝝎𝝎,𝜽𝜽 𝒔𝒔𝟏𝟏…𝒏𝒏𝑴𝑴𝝍𝝍,𝜼𝜼 𝒔𝒔𝟏𝟏…𝒏𝒏, 𝒕𝒕
Physics Discovery Network

Scenario 2: Degradation rate labels are not available.

Presenter Notes
Presentation Notes
This research study acknowledges that degradation intensity in a system does not solely depend on time; it can also vary across different frequencies or spatial coordinates within a system. Therefore, to obtain a more accurate understanding of degradation behaviorThe case studies data used in this study contain no data anomalies, and all have the same numerical values. However, challenges such as unlabeled data, anomalies (like missing data and erroneous sensor measurements), and the presence of non-structured, multi-modal, and heterogeneous data are common when dealing with real-world datasets.This dissertation focuses only on prognostics applications (i.e., estimation of RUL or degradation intensity). However, it is also essential to consider diagnostics to develop a highly effective proactive maintenance strategy. 



Verification with the Simulated Dataset (cont.)
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Scenario 1: Degradation rate labels are available

Scenario 2: Degradation rate labels are not available.

Presenter Notes
Presentation Notes
This research study acknowledges that degradation intensity in a system does not solely depend on time; it can also vary across different frequencies or spatial coordinates within a system. Therefore, to obtain a more accurate understanding of degradation behaviorThe case studies data used in this study contain no data anomalies, and all have the same numerical values. However, challenges such as unlabeled data, anomalies (like missing data and erroneous sensor measurements), and the presence of non-structured, multi-modal, and heterogeneous data are common when dealing with real-world datasets.This dissertation focuses only on prognostics applications (i.e., estimation of RUL or degradation intensity). However, it is also essential to consider diagnostics to develop a highly effective proactive maintenance strategy. 



Case study for Scenario 1: Corrosion in Marine Environment
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• Objective: Prediction of long-term corrosion degradation in C1010 steel coupons in marine environment
• Environmental factors

• Exposure time
• Temperature
• Humidity
• Solar radiation
• Gradient of temperature with respect to time
• Gradient of humidity with respect to time
• Gradient of solar radiation with respect to time

Short-term data
Long-term data

Presenter Notes
Presentation Notes
It results due to the external vibrations in the surrounding or cyclic expansion and contraction of the contacting bodies from temperature cycling (difference in CTEs).Preventative Measures:Lubrication (Mineral and synthetic oils, greases, PFPE, PAO, etc.),Thickness design of the contacts (plating)



Case study for Scenario 1: Results
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GNN: Guided neural network, NN: Neural network, CI: confidence interval
H. Habibollahi Najaf Abadi and M. Modarres, "Predicting system degradation with a guided neural network approach," Sensors, vol. 23, no. 14, p. 6346, 2023

• Comparing the physics-informed (guided) NN (GNN) with a regular NN

Presenter Notes
Presentation Notes
It results due to the external vibrations in the surrounding or cyclic expansion and contraction of the contacting bodies from temperature cycling (difference in CTEs).Preventative Measures:Lubrication (Mineral and synthetic oils, greases, PFPE, PAO, etc.),Thickness design of the contacts (plating)



Case study for Scenario 1: Results (cont.)
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SVR: Support vector regression, LR: Linear regression, PR: Polynomial regression, GNN: Guided neural network
[77] H. Habibollahi Najaf Abadi and M. Modarres, "Predicting system degradation with a guided neural network approach," Sensors, vol. 23, no. 14, p. 6346, 2023

• Comparing the physics-informed (guided) NN with other machine learning techniques

Presenter Notes
Presentation Notes
It results due to the external vibrations in the surrounding or cyclic expansion and contraction of the contacting bodies from temperature cycling (difference in CTEs).Preventative Measures:Lubrication (Mineral and synthetic oils, greases, PFPE, PAO, etc.),Thickness design of the contacts (plating)



Case study for Scenario 1: Results (cont.)

18[77] H. Habibollahi Najaf Abadi and M. Modarres, "Predicting system degradation with a guided neural network approach," Sensors, vol. 23, no. 14, p. 6346, 2023

𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷, �𝐷𝐷 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑑𝑑

𝐷𝐷𝑖𝑖 − �𝐷𝐷𝑖𝑖

𝑀𝑀𝑀𝑀 𝐷𝐷, �𝐷𝐷 = 𝑚𝑚𝑎𝑎𝑚𝑚( 𝐷𝐷𝑖𝑖 − �𝐷𝐷𝑖𝑖 )

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷, �𝐷𝐷 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑑𝑑
𝐷𝐷𝑖𝑖 − �𝐷𝐷𝑖𝑖

𝑚𝑚𝑎𝑎𝑚𝑚(𝜈𝜈, 𝐷𝐷𝑖𝑖 )

• Comparing the physics-informed (guided) NN with other machine learning techniques (training data)

MAE: Mean absolute error, ME: Maximum error, MAPE: Mean absolute percentage error
SVR: Support vector regression, LR: Linear regression, PR: Polynomial regression, GNN: Guided neural network

𝐷𝐷: Actual degradation intensity
�𝐷𝐷: Degradation intensity estimated by 
the predictive network

Presenter Notes
Presentation Notes
It results due to the external vibrations in the surrounding or cyclic expansion and contraction of the contacting bodies from temperature cycling (difference in CTEs).Preventative Measures:Lubrication (Mineral and synthetic oils, greases, PFPE, PAO, etc.),Thickness design of the contacts (plating)


		Training data

		Model

		MAE

		ME

		MAPE

		 score



		2 months

		SVR (linear)

		0.022

		0.047

		0.291

		0.200



		

		SVR (poly)

		0.022

		0.047

		0.291

		0.200



		

		LR

		0.022

		0.057

		0.270

		0.283



		

		PR

		0.022

		0.057

		0.270

		0.283



		

		Regular NN

		0.022

		0.057

		0.269

		0.283



		

		GNN

		0.0307

		0.089

		0.289

		-0.655



		3 months

		SVR (linear)

		0.022

		0.047

		0.252

		0.657



		

		SVR (poly)

		0.020

		0.047

		0.233

		0.681



		

		LR

		0.020

		0.061

		0.213

		0.705



		

		PR

		0.018

		0.057

		0.210

		0.729



		

		Regular NN

		0.020

		0.062

		0.220

		0.688



		

		GNN

		0.021

		0.076

		0.195

		0.632



		4 months

		SVR (linear)

		0.025

		0.050

		0.244

		0.808



		

		SVR (poly)

		0.023

		0.050

		0.221

		0.831



		

		LR

		0.021

		0.064

		0.181

		0.864



		

		PR

		0.020

		0.059

		0.183

		0.871



		

		Regular NN

		0.021

		0.067

		0.185

		0.853



		

		GNN

		0.024

		0.098

		0.191

		0.757



		5 months

		SVR (linear)

		0.029

		0.070

		0.219

		0.875



		

		SVR (poly)

		0.030

		0.061

		0.219

		0.871



		

		LR

		0.025

		0.074

		0.166

		0.893



		

		PR

		0.025

		0.061

		0.172

		0.907



		

		Regular NN

		0.027

		0.081

		0.172

		0.881



		

		GNN

		0.029

		0.103

		0.195

		0.849









Case study for Scenario 1: Results (cont.)
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MAE: Mean absolute error, ME: Maximum error, MAPE: Mean absolute percentage error
SVR: Support vector regression, LR: Linear regression, PR: Polynomial regression, GNN: Guided neural network

[77] H. Habibollahi Najaf Abadi and M. Modarres, "Predicting system degradation with a guided neural network approach," Sensors, vol. 23, no. 14, p. 6346, 2023
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1
𝑁𝑁
�
𝑖𝑖=1

𝑑𝑑
𝐷𝐷𝑖𝑖 − �𝐷𝐷𝑖𝑖

𝑚𝑚𝑎𝑎𝑚𝑚(𝜈𝜈, 𝐷𝐷𝑖𝑖 )

• Comparing the physics-informed (guided) NN with other machine learning techniques (test data)

𝐷𝐷: Actual degradation intensity
�𝐷𝐷: Degradation intensity estimated by 
the predictive network

Presenter Notes
Presentation Notes
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Case study for Scenario 2: Degradation in Aircraft Engines
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• Objective: Prediction of  degradation intensity in form of remaining useful life for aircraft engines

• Data: Environmental factors (21 sensors) and RUL [23]
• 14 sensors yield statistically significant measurements [24]

[23] A. Saxena, K. Goebel, D. Simon and N. Eklund, "Damage propagation modeling for aircraft engine run-to-failure simulation," in International conference on prognostics and health management, Denver, CO, USA, 2008.
[24] W. Zhang, G. Peng, C. Li, Y. Chen and Z. Zhang, "A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals," Sensors, vol. 17, no. 2, p. 425, 2017. 



Case study for Scenario 2: Degradation in Aircraft Engines (cont.)

21H. Habibollahi Najaf Abadi and M. Modarres, "A Deep learning approach for discovering and incorporating the underlying physics of degradation in data-driven prognostics," in 2024 Annual Reliability and 
Maintainability Symposium (RAMS), Albuquerque, 2024

NASA C-MAPSS
dataset 𝜕𝜕𝑅𝑅𝑅𝑅𝑅𝑅

𝜕𝜕𝑡𝑡 = 𝑓𝑓(𝑆𝑆1…𝑛𝑛)

Physics 
discovery

(50%)

Validation
(50%)

Underlying physics of degradation

Physics-informed DL model

(80% train, 20% test)

(80% train, 20% test)

Physics discovery framework
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Case study for Scenario 2: Results
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RUL: Remaining useful life, MSE: Mean squared error, MAPE: Mean absolute percentage error
[H. Habibollahi Najaf Abadi and M. Modarres, "A Deep learning approach for discovering and incorporating the underlying physics of degradation in data-driven prognostics," in 2024 Annual Reliability and 
Maintainability Symposium (RAMS), Albuquerque, 2024

Model Dataset MSE MAPE 𝑅𝑅2

Physics-informed model Training 10.30 0.17 0.89
Test 14.72 0.27 0.79

Purely data-driven model Training 3.54 0.06 0.98
Test 20.18 0.28 0.61

• Comparing actual RUL with estimated 
RUL by physics-informed and purely 
data-driven model for training and test 
datasets
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Case Study for Scenario 2: Results (cont.)

23[25] S. M. Lundberg and S.-I. Lee, "A unified approach to interpreting model predictions," in 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 2017.
H. Habibollahi Najaf Abadi and M. Modarres, "A Deep learning approach for discovering and incorporating the underlying physics of degradation in data-driven prognostics," in 2024 Annual Reliability 

and Maintainability Symposium (RAMS), Albuquerque, 2024

�𝜕𝜕𝑅𝑅𝑅𝑅𝑅𝑅
𝜕𝜕𝑡𝑡

𝑠𝑠1

𝑠𝑠𝑛𝑛

…

𝑵𝑵𝝎𝝎,𝜽𝜽 𝒔𝒔𝟏𝟏…𝒏𝒏

Physics Discovery
Model

SHapley Additive
exPlanations

Recursive feature elimination

• Feature importance measurement identifies dominant environmental and user
stresses variables with measurable effects on degradation.

• SHAP applies a recursive feature elimination to remove irrelevant
environmental factors—it is a game theoretic approach

• SHAP [25] values: which sensor measurements push the RUL prediction higher (positive SHAP 
values) and which pull it down (negative SHAP values)

• Magnitude of the SHAP value indicates the strength of the measured environmental factor’s impact 
on the prediction. 
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• DL reliability models are black-box regression model
• They show nothing about the underlying physics of degradation 

and the dominant stresses 
• Proposed approach is a dual guided NN framework including 

input stress importance assessment and interpretability 
• Integrating the discovered physics into a DL prognostic 

model significantly improved prediction of degradation or life
• The proposed approach offers valuable benefits to designers 

and users

Summary and Conclusions



Current and Future Works

• Consider effects of environmental and user stresses on spatial, 
acceleration and higher partials of degradation

That is, discovering an item’s degradation function, D 𝑚𝑚, 𝑡𝑡 , from 
the field, test, and survey degradation data to build the PDE:

𝐹𝐹 𝑚𝑚, 𝑡𝑡,𝐷𝐷𝜕𝜕 ,𝐷𝐷𝑥𝑥 ,𝐷𝐷𝜕𝜕𝜕𝜕 ,𝐷𝐷𝑥𝑥𝑥𝑥, 𝐷𝐷𝑥𝑥𝜕𝜕 = 0

• Sensitivity and optimization of the NN structure

• Case studies: energy and process systems, composite structures, and 
IC manufacturing

• Applications to predictive maintenance policy and decision making

25

Presenter Notes
Presentation Notes
This research study acknowledges that degradation intensity in a system does not solely depend on time; it can also vary across different frequencies or spatial coordinates within a system. Therefore, to obtain a more accurate understanding of degradation behaviorThe case studies data used in this study contain no data anomalies, and all have the same numerical values. However, challenges such as unlabeled data, anomalies (like missing data and erroneous sensor measurements), and the presence of non-structured, multi-modal, and heterogeneous data are common when dealing with real-world datasets.This dissertation focuses only on prognostics applications (i.e., estimation of RUL or degradation intensity). However, it is also essential to consider diagnostics to develop a highly effective proactive maintenance strategy. 
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