A Deep Learning Approach for Discovering the Underlying Physics of Degradation for Data-Driven Prognostics

Wednesday January 24, 2024
Hamidreza Habibollahi Najaf Abadi
Mohammad Modarres
Center for Risk and Reliability, University of Maryland-College Park

Deep Learning for Prognostics and Health Management

- Advantages
 - Ability to handle high-dimensional data
 - Recognize highly nonlinear patterns in data
- Challenges
 - Disregarding the underlying physics of degradation
 - Requiring a substantial amount of training data
 - Lack of interpretability

Study Objectives

- Discovering/Incorporating Physics
 - Establishing a relationship between the suspected influential environmental factors and the degradation rate: $\frac{\partial_{RUL}}{\partial t} = f(S_1, S_2, ..., S_n)$
- Providing Interpretability
 - Identifying the primary environmental factors that significantly impact the degradation process

Proposed Approach

2024 RAMS – Session 9E – Habibollahi & Modarres

Validation Through Data Simulation

- Assumptions:
 - Seven environmental factors are collected by seven sensors (i.e., $S_1, S_2, ..., S_7$).
 - Underlying physics: $\frac{\partial D}{\partial t} = a \times Ln(S_1^2) + b \times S_1 \times S_7 + c \times (S_2 + S_3 + S_4 + S_5 + S_6)$
 - Parameters a, b, and c are constants set to 0.5, 2, and 0.001, respectively.
 - Degradation rates were randomly drawn from a uniform distribution with a minimum value of 0 and a maximum value of 10.

Sensor	Distribution	Inspiration factor
<i>S</i> ₁	$\mathcal{N}(\mu = 25, \sigma = 10)$	Temperature
<i>S</i> ₂	$\mathcal{N}(\mu = 70, \sigma = 15)$	Relative humidity
S ₃	$\mathcal{N}(\mu = 7, \sigma = 2)$	pH
S_4	$\mathcal{N}(\mu = 10, \sigma = 2)$	Wind speed
<i>S</i> ₅	$\mathcal{U}(\mu = 0, \sigma = 360)$	Wind direction
S ₆	$\mathcal{N}(\mu = 100, \sigma = 10)$	Solar radiation

Degradation in Aircraft Engines

Ē

H. Habibollahi Najaf Abadi and M. Modarres, "A Deep learning approach for discovering and incorporating the underlying physics of degradation in data-driven prognostics," in 2024 Annual Reliability and Maintainability Symposium (RAMS), Albuquerque, 2024

Case Study – Feature Importance Measurement

2024 RAMS – Session 9E – Habibollahi & Modarres

Case Study – Recursive Feature Elimination

Number of considered factors	Dataset	MSE	MAPE	<i>R</i> ²
14	Training	10.30	0.17	0.89
	Test	14.72	0.27	0.79
10	Training	10.67	0.17	0.88
	Test	15.07	0.26	0.78
8	Training	10.57	0.17	0.89
	Test	14.65	0.27	0.79
6	Training	11.05	0.18	0.88
	Test	14.40	0.25	0.80
5	Training	32.03	1.60	0
	Test	32.55	1.71	0

Case study 2 Results

• Comparing the physics-informed Predictive (Guided) NN with a Regular NN

Ē

Summary & Conclusions

- DL prognostic models: black-box regression model
 - Do not provide any information about the underlying physics of degradation and the dominant stresses
- Proposed approach: a dual NN framework and a feature importance measurement tool
- Integrating the discovered physics into a DL prognostic model significantly improved performance
- The proposed approach offers valuable benefits to designers and users

