%% Routine for Life-Stress Relationship Plotting Example % Coded by Reuel Smith 2015-2017 % v. MATLAB R2015b through 2017a % ======================================================================== % Example Problem 4.7 % Consider an accelerated test where temperature is the accelerating % variable and 20 units were tested to failure assuming complete failures % (no censoring). Eight units were tested at 406 K, and six units each at % 436 K and 466 K, with times to failure tabulated below. Assuming an % Arrhenius-Weibull life-stress relationship, find the parameters of the % model, using both the plotting method and MLE method and compare the % results. Find the expected life at the use level temperature of 353 ?K % and compare the results. % Temperature Time to Failure (hrs) % =========== ===================================== % 406 K 248 456 528 731 813 965 972 1528 % 436 K 164 176 289 319 386 459 % 466 K 92 105 155 184 219 235 % % Solution: % This routine computes the expected life at use level temperature 353 ?K % and plots the relationship plot. The assumed Life-Stress relationship % for this problem is the Arrhenius model L(t) = b*exp(a/T) or ln(L(t)) = % ln(b) + a*(1/T) Eqn(4.40) where T-temperature, a-slope, and ln(b) is the % intercept. The Life-stress relationship plot may take additional models % in place of Arrhenius (see textbook). % ======================================================================== clc clear % ======================================================================== % Known alpha (life) values at 406, 436, and 466 degrees K. These are % evaluated by the Weibull_Plotting_Multiple_Data_Example_Problem_4_7.m % MATLAB script. alpha_1 = [898.698471763768]; alpha_2 = [341.942889990736]; alpha_3 = [187.571102122010]; % 1/Temperature Tempaxis = [1/406 1/436 1/466]; % Life axis (hours) Lifeaxis = [alpha_1 alpha_2 alpha_3]; % Fit the X and Y vectors to a linear equation (gets m and b) p4 = polyfit(Tempaxis,Lifeaxis,1); % Extrapolate best fit relation line for Life and Stress x1 = linspace(min(Tempaxis),1/300,1000); y1 = polyval(p4,x1); % Value of life at use condition 353 degrees K Uselife = polyval(p4,1/353); % CHANGE THE 1/TEMP VALUES TO THE STRESS CONDITION OF YOUR CHOICE figure(1) plot(1/406,alpha_1,'b*',1/436,alpha_2,'rs',1/466,alpha_3,'gp',x1,y1,'k--',1/353,Uselife,'k^') xlabel('1/Temp (K^-^1)') ylabel('Characteristic Life (hours)') legend('Stress Level 1 - 406 deg K','Stress Level 2 - 436 deg K','Stress Level 3 - 466 deg K','Best Fit Line','Characteristic Use life at 353 deg K','Location','Northwest') grid on set(gcf,'color','w');
Top